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Abstract. It is shown that the CKMT model for the nucleon structure function F2, taken as the initial
condition for the NLO evolution equations in perturbative QCD, provides a good description of the HERA
data when presented in the form of the logarithmic slopes of F2 versus x and Q2 (Caldwell plot), in the
whole available kinematic ranges. Also the results obtained for the behavior of the gluon component of a
nucleon are presented.

1 The CKMT model

The CKMT model [1] for the parameterization of the nu-
cleon structure function F2 is a theoretical model based
on Regge theory which provides a consistent formulation
of this function in the region of low Q2 and describes the
experimental data on F2 in that region.

The CKMT model [1] proposes for the nucleon struc-
ture functions,

F2(x,Q2) = FS(x,Q2) + FNS(x,Q2), (1)

the following parameterization of its two terms in the re-
gion of small and moderate Q2. For the singlet term, cor-
responding to the pomeron contribution:

FS(x,Q2) = A·x−∆(Q2)·(1−x)n(Q2)+4·
(

Q2

Q2 + a

)1+∆(Q2)

,

(2)
where the x →0 behavior is determined by an effective
intercept of the pomeron, ∆, which takes into account
pomeron cuts and, therefore (and this is one of the main
points of the model), it depends on Q2. This dependence
was parameterized [1] as

∆(Q2) = ∆0 ·
(
1 +

∆1 · Q2

Q2 + ∆2

)
. (3)

Thus, for low values of Q2 (large cuts), ∆ is close to the
effective value found from analysis of the hadronic total
cross-sections (∆ ∼ 0.08), while for high values of Q2

(small cuts), ∆ takes the bare pomeron value, ∆ ∼ 0.2–
0.25. The parameterization for the non-singlet term, which
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corresponds to the secondary reggeon (f , A2) contribu-
tion, is

FNS(x,Q2) = B ·x1−αR · (1−x)n(Q2) ·
(

Q2

Q2 + b

)αR

, (4)

where the x →0 behavior is determined by the secondary
reggeon intercept αR, which is in the range αR = 0.4–0.5.
The valence quark contribution can be separated into the
contribution of the u (Bu) and d (Bd) valence quarks, the
normalization condition for valence quarks fixes both con-
tributions at one given value of Q2 (we use Q2

v = 2GeV2

in our calculations ). For both the singlet and the non-
singlet terms, the behavior when x →1 is controlled by
n(Q2), where n(Q2) is

n(Q2) =
3
2

·
(
1 +

Q2

Q2 + c

)
. (5)

Therefore, for Q2 = 0 the valence quark distributions have
the same power, given by Regge intercepts, as in the quark
gluon string model [2] or in the dual parton model [3],
n(0) = αR(0) − αN(0) ∼ 3/2, while the behavior of n(Q2)
for large Q2 is taken to coincide with dimensional counting
rules.

The total cross-section for real (Q2 = 0) photons can
be obtained from the structure function F2 using the fol-
lowing relation:

σtot
γp (ν) =

[
4π2αEM

Q2 · F2(x,Q2)
]

Q2=0
. (6)

The proper F2(x,Q2) ∼ Q2 behavior when Q2 → 0 is
given in the model by the last factors in (2) and (4), lead-
ing to the following form of the σtot

γp (ν) in the CKMT
model:
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Table 1. Values of the parameters in the CKMT model ob-
tained in the fit of F2 when also the low Q2 HERA data are
included. All dimensional parameters are given in GeV2. The
valence counting rules provide the following values of Bu and
Bd, for the proton case, when fixing their normalization at
Q2

v = 2GeV2: Bu = 1.1555, Bd = 0.1722

CKMT model Values of the parameters

A 0.1301
a 0.2628

∆0 0.09663
∆1 1.9533
∆2 1.1606
c 3.5489 (fixed)
b 0.3840

αR 0.4150 (fixed)

σtot
γp (ν) = 4π2αEM · (

A · a−1−∆0 · (2mν)∆0

+ (Bu + Bd) · b−αR · (2mν)αR−1) . (7)

The parameters in the model were determined [1] from
a joint fit of the σtot

γp data and the NMC data [4] on the
proton structure function in the region 1GeV2 ≤ Q2 ≤
5GeV2, obtaining a very good description of the available
experimental data.

The next step in this approach is to introduce the
QCD evolution in the partonic distributions of the CKMT
model and thus to determine the structure functions at
higher values of Q2. For this, the evolution equation in
two loops in the MS scheme with Λ = 200MeV was used
[1].

The results obtained by taking into account the QCD
evolution in this way are [1] in a very good agreement with
the experimental data on F2(x,Q2) at high values of Q2.

The HERA data [5,6] on F2 at low and moderate Q2

provided the opportunity of including in the fit experimen-
tal points from the kinematical region where the CKMT
parameterization should give a good description without
any QCD evolution. Thus, we added [7] these new H1 and
ZEUS data on F2 at low and moderate Q2 to those from
the NMC [4] and E665 [8] collaborations, and to the data
[9] on cross-sections for real photoproduction, to obtain a
global fit which allowed for the test of the model in wider
regions of x and Q2. For this new fit, one took as initial
conditions for the values of the different parameters those
obtained in the previous fit [1], and although the quality
of the fit is not very sensitive to small changes in the val-
ues of the parameters, the best fit has been found for the
values of the parameters given in Table 1.

The quality of the description provided by the CKMT
model of all the experimental data on σtot

γp and F2, and, in
particular, of the new experimental data from HERA, is
very high (χ2/d.o.f. = 106.95/167 for the global fit, with
the statistical and systematic errors treated in quadrature,
and the relative normalization among all the experimental
data sets taken equal to 1).

Thus, the general features of the CKMT model de-
scribe the experimental data in the region of low Q2 (0 <
Q2 < Q2

0), and therefore this parameterization can be
taken at a starting value of Q2, Q2

0, as the initial condi-
tion in the NLO QCD evolution equation, to obtain F2 at
values of Q2 higher than Q2

0. In order to determine the
distributions of gluons in a nucleon, the CKMT model as-
sumes [1] that the sea-quark and gluon distributions are
different only in the region x → 1. Following [10] we have

xg(x,Q2) = Gxq̄(x,Q2)/(1 − x), (8)

where xq̄(x,Q2) is proportional to the expression in (2).
The constant G is determined from the energy-momentum
conservation sum rule.

This approach provides a smooth transition from the
region of small Q2, which is governed by the physics of
Regge theory, to a region of large Q2, where the effects
of QCD evolution are important. We have performed our
calculations for the two different values of Q2

0 = 2GeV2

and Q2
0 = 4GeV2. We also show our results in the shape

of both the dF2/d lnQ2 and the d lnF2/d ln(1/x) slopes in
order to compare with the experimental data when these
are given in the so-called Caldwell plot.

The Q2 dependence of F2 can be summarized as fol-
lows (see AppendixA for the technical details in the calcu-
lation of the NLO QCD evolution of F2 and its logarithmic
derivatives dF2/d lnQ2, and d lnF2/d ln(1/x)):

(1) In the region 0 < Q2 ≤ Q2
0 we use the pure CKMT

model for F2, (1)–(5).
(2) For Q2

0 < Q2 ≤ Q2
c (charm threshold) [11], one has to

consider the QCD evolution of F2 at NLO in the MS
scheme, (13), for a number of flavors nf = 3 (u, d, s).
We take as the starting parameterization the one given
by the CKMT model. We have used two different val-
ues of Q2

0: Q
2
0 = 2GeV2, and Q2

0 = 4GeV2.
(3) For Q2 > Q2

c , the QCD evolution is computed at NLO
in the MS scheme, but now with a number of flavors
nf = 4, and by using the parton distribution functions
for the u, d, s, and c quarks. The charm is produced
as massless quark in the evolution process.

The charm production is of particular interest. Fol-
lowing [11,12], the assumption of a massless charm quark
produced above the threshold Q2

c = 4m2
c (m2

c being the
charm quark mass) via the usual DGLAP evolution is not
realistic. This procedure is useful in the range of high val-
ues, Q2 � Q2

c , only. In the intermediate region Q2
c < Q2 <

Q̄2 = 50GeV2, the charm can be treated via a photon–
gluon fusion process. The corresponding contribution to
the structure function is defined as

1
x
F c

2 (x,Q
2,m2

c) = 2e2
c

αs(µ2)
2π

∫ 1

ax

dy
y

·Cc
g,2

(
x

y
,
m2

c

Q2

)
· g(y, µ2), (9)
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Fig. 1. F2 as a function of x computed in the CKMT model for twelve different values of Q2, and compared with the following
experimental data (see [14] for the experimental references): ZEUS SVX95 (black circles), H1 SVX95 (white triangles), ZEUS
BPC95 (white squares), E665 (white diamonds), and ZEUS 94 (white circles). The dotted line is the theoretical result obtained
with the pure CKMT model, and the bold (solid) line is the result obtained with the NLO QCD-evoluted CKMT model when
one takes Q2

0 = 2GeV2 (Q2
0 = 4GeV2). The bold and solid lines overlap on large regions of x for most of the Q2 values presented

in this figure
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Fig. 2a,b. F2 as a function of x computed in the CKMT model for six a and five b different low values of Q2, and compared
with the following experimental data (see [14–16] for the experimental references): ZEUS BPT97 (black circles), ZEUS BPC95
(white circles), and E665 (white squares). The theoretical result has been obtained with the pure CKMT model

where µ2 = 4m2
c , a = 1 + 4m2

c/Q
2 and the coefficient

Cc
g,2(Z,R) is given by

Cc
g,2(Z,R) =

1
2

{
[Z2 + (1 − Z)2

+4ZR(1 − 3Z) − 8Z2R2] ln
1 + V

1 − V

+V [−1 + 8Z(1 − Z) − 4ZR(1 − Z)]

}
, (10)

with V 2 = 1 − 4RZ/(1 − Z). So, F2 is given by (13) in
AppendixA, where the sum runs over q = u, d, s, plus
(9). The contributions of the botom and top quarks are
neglected here. The charm threshold is defined as [11,12]

W 2 ≡ Q2(1/x − 1) ≥ Q2
c = 4m2

c . (11)

The threshold Q̄2 where the charm production in the evo-
lution process becomes more important than the photon–
gluon fusion is discussed in detail in [12]. The value Q̄2 =
50GeV2 is chosen by looking for the smoothness of the
transition. This method working better for x → 0 than
for x → 1, this explains the small wiggles in some of the
figures at Q2 = 50GeV2.

2 Results

Our results are presented in Figs. 1 to 9.
Figure 1 shows F2(x,Q2) as a function of x for several

values of Q2, from Q2 = 0.6GeV2 to Q2 = 17GeV2. The
dotted lines correspond to the pure CKMT model without
any perturbative evolution, while the full lines run for the
evoluted CKMT parameterization. When for a given value
of Q2 two full lines are depicted, the bold (solid) one has
been obtained by taking the starting point for the QCD
evolution as Q2

0 = 2GeV2 (Q2
0 = 4GeV2). Experimental

points in this figure are from E665 [8], H1 [13], and ZEUS
[14] collaborations.

In Figs. 2a,b we present the comparison of the pure
CKMT parameterization of F2 with the low Q2 data of
E665, ZEUS-BPC95, and ZEUS-BPT97, as compiled in
[15] and [16]. One sees that the agreement between the
CKMT model and the experimental data in this region of
low Q2 is good.

In Fig. 3 (Caldwell plot), the slope dF2/d lnQ2 is
shown as a function of x, and compared with the a+b lnQ2

fit to the ZEUS F2 data in bins of x. This plot was con-
sidered as evidence for a transition from the hard to the
soft regime of QCD in the region of Q2 ∼ 5GeV2 (see
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Fig. 3. dF2/d lnQ2 as a function of x computed by performing
the NLO QCD perturbative evolution of the CKMT model
(see AppendicesA and B for details on the calculation), and
compared with the fit to the form a + b lnQ2 of the ZEUS
F2 data in bins of x (see [14] and references therein for more
details on the data and the experimental fit). The dotted line
is the theoretical result obtained with the pure CKMT model,
and the bold (solid) line is the result obtained with the NLO
QCD-evoluted CKMT model when one takes Q2

0 = 2GeV2

(Q2
0 = 4GeV2)

for example [17]). This question has been studied theo-
retically in [18,19]. Figure 3 shows that the CKMT model
is in a good agreement with experimental points in the
whole region of x and Q2. One problem with the presen-
tation of the data in Fig. 3 is a strong correlation between
the x and Q2 values for the data points. It follows from
the formulas of the CKMT model for dF2(x,Q2)/d lnQ2

given in AppendixB that for a fixed value of Q2 this quan-
tity monotonically increases as x → 0. The existence of a
maximum of dF2(x,Q2)/d lnQ2 in Fig. 3 is related to the
correlation between Q2 and x in the region of small x (or
Q2). The same conclusion was reached in [18], and recently
confirmed by experimental data [16].

Figures 4 and 5 show the slope d lnF2/d ln(1/x) as a
function of Q2 compared to the fits F2 = Ax−∆eff of
the ZEUS [14] and H1 [13] data, respectively. In Fig. 4,
as the x range of the BPC95 data is restricted, also the
E665 [8] data are taken into account. This slope is some-
times interpreted as the ∆eff of the pomeron exchange,
∆eff = d lnF2/d ln(1/x). Let us note that in our approach
∆eff for Q2 > Q2

0 cannot be interpreted as an effective
pomeron intercept, because the QCD evolution leads to a

Fig. 4. d lnF2/d ln(1/x) as a function of Q2 calculated by
performing the NLO QCD evolution of the CKMT model, and
compared to the fit F2 = Ax−∆eff of the ZEUS [14] and the
E665 [8] data with x < 0.01. For details on the CKMT calcu-
lation, see AppendicesA and B. The dotted line is the theoret-
ical result obtained with the pure CKMT model, and the bold
(solid) line is the result obtained with the NLO QCD-evoluted
CKMT model when one takes Q2

0 = 2GeV2 (Q2
0 = 4GeV2)

substantial increase of ∆eff as Q2 increases. On the other
hand, this effect should decrease as x → 0.

In the experimental fits, each Q2 bin corresponds to
an average value of x, 〈x〉, calculated from the mean value
of ln(1/x) weighted by the statistical errors of the corre-
sponding F2 values in that bin. Even though we can pro-
ceed as in the experimental fits, and we get a very good
agreement with the data, since the estimation of 〈x〉 is in
some sense artificial and arbitrary, and it introduces un-
physical wiggles when drawing one full line connecting the
different bins, we made for all the Q2 bins in these figures
the choice of the smallest x in the data, instead of consider-
ing a different 〈x〉 for each Q2. This choice is based on the
fact that the ansatz ∆eff = d lnF2/d ln(1/x) is actually
valid for small x, and it results in a smooth curve except
for the jump in the region around Q2 ∼ 50GeV2, where
the evolution procedure changes (again, see AppendixA
for more details).

Since the structure function F2 in the region of low
x is determined to a large extent by the gluon compo-
nent, we present our prediction for the behavior of this
gluon component. Thus, Fig. 6 shows the gluon density
distribution as a function of Q2 calculated by perform-
ing the NLO QCD evolution of the CKMT model, and its
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Fig. 5. d lnF2/d ln(1/x) as a function of Q2 calculated by
performing the NLO QCD evolution of the CKMT model, and
compared to the fit F2 = Ax−∆eff of the H1 data [13]. For
details on the CKMT calculation, see appendices A and B.
The dotted line is the theoretical result obtained with the pure
CKMT model, and the bold (solid) line is the result obtained
with the NLO QCD-evoluted CKMT model when one takes
Q2

0 = 2GeV2 (Q2
0 = 4GeV2)

comparison with the H1 Collaboration data in [20]. Fig-
ure 7 represents the gluon densities at µ2 = 25GeV2 as
a function of x calculated by evoluting the CKMT model
at NLO, and compared to those determined from H1 DIS
and photoproduction data. Experimental data on D∗ me-
son cross-section measurements are from [16,20]. Figure 8
shows the behavior of xg(x, µ2) at µ2 = 200GeV2 as a
function of Q2, to be compared with the H1-dijets results
[16,21]. Finally, Fig. 9 shows the prediction of the CKMT
model for xg(x,Q2) as a function of x at the values of Q2

measured both by H1 and ZEUS collaborations.
A satisfactory agreement with the experiment is ob-

tained in the whole ranges of x and Q2 where experimen-
tal data are available. This shows that the experimental
behavior of F2, its logarithmic slopes, and its gluon com-
ponent can be described by using as an initial condition
for the QCD evolution equation a model of F2 where the
shadowing effects which are important at low values of Q2

are included, like the CKMT model.

3 Discussion and conclusions

Let us now compare the approach of the model considered
in this paper [1] with other existing theoretical models
for the description of the interaction of virtual photons
with protons [18,19,22–28], both in the small and large

Fig. 6. Gluon density distribution as a function of Q2 calcu-
lated by performing the NLO QCD evolution of the CKMT
model, and compared with the H1 Collaboration data in [20].
We plot g(x, Q2) instead of xg(x, Q2), in order to show more
clearly the evolution with the scale. In the theoretical calcula-
tion, the bold (solid) line has been obtained by taking a value
of Q2

0 of Q2
0 = 2GeV2 (Q2

0 = 4GeV2)

Fig. 7. Gluon densities at µ2 = 25GeV2 as a function of x, cal-
culated by performing the NLO QCD evolution of the CKMT
model, and compared to those determined from H1 DIS data
(black dots), and from H1 photoproduction data (stars). Ex-
perimental data on D∗ meson cross-section measurements are
from [16,20]. In the theoretical calculation, the solid (dotted)
line corresponds to a value of Q2

0 at the starting point of the
QCD evolution of Q2

0 = 2GeV2 (Q2
0 = 4GeV2)
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Fig. 8. Gluon density at µ2 = 200GeV2 as a function of x, cal-
culated by performing the NLO QCD evolution of the CKMT
model, to be compared with that obtained from the analysis
of the H1 dijet data [16,21]. In the theoretical calculation, the
solid (dotted) line has been obtained by taking a value of Q2

0
at the starting point of the QCD evolution of Q2

0 = 2GeV2

(Q2
0 = 4GeV2)

Q2 regions. The ALLM parameterization [18] uses Q2-
dependent powers of 1/x, but contrary to [1] it does not
specify a dynamic origin of this dependence and it does
not introduce QCD evolution. In [23,26,28] some forms
of vector dominance are used to describe the dynamics in
the low Q2 region, while perturbative QCD calculations
are applied at large Q2. In [19], the dipole model of the
pomeron is applied to a description of F2 in a broad re-
gion of Q2. The model of the BFKL pomeron with running
coupling constant is used in [25]. A “soft” pomeron contri-
bution is also needed in this model for the description of
the experimental data. Models with two pomerons (“soft”
and “hard”) are developed in [24,27]. In [24], QCD evo-
lution equations fix the Q2 dependence of the residues. A
particular realization of the idea in [1] on the influence of
shadowing (or saturation) effects on the effective intercept
of the pomeron was presented in [29]. Thus, there are dif-
ferent theoretical ideas on the origin of the Q2-dependent
intercept experimentally observed at HERA, which also
lead to different consequences for the behavior of the struc-
ture functions in the region of small x ∼ 10−6–10−8. In
the models of [24,25,27], for example, the effective inter-
cept should increase as energy (or 1/x) increases, while in
models leading to saturation the effective intercept should
decrease as x → 0. Crucial information on the behavior of
the structure functions in the region of extremely small x,
not accessible at HERA, will be available at LHC.

Finally, we conclude that the CKMT model for the pa-
rameterization of the nucleon structure functions provides
a very good description of all the available experimental

Fig. 9. Prediction of the behavior of xg(x, Q2) as a function
of x, for several values of Q2 measured by both H1 and ZEUS
collaborations. The experimental points are not shown since
the analysis of the more recent data is not completed. The
solid (dotted) lines have been obtained by taking a value of Q2

0
at the starting point of the QCD evolution of Q2

0 = 2GeV2

(Q2
0 = 4GeV2)

data on F2(x,Q2) at low and moderate Q2, including the
recent small-x HERA points.

An important ingredient of the model is the depen-
dence of an effective intercept of the pomeron on Q2.
It has recently been shown [22] that such a behavior is
naturally reproduced in a broad class of models based
on reggeon calculus, which describes simultaneously the
structure function F2 and the diffractive production by
virtual photons.

Use of the CKMT model as the initial condition for
the QCD evolution equations in the region of Q2 = 2–
5GeV2 leads to a good description of all available data in
a broad region of Q2, including the logarithmic slopes of
the structure function F2(x,Q2), dF2(x,Q2)/d lnQ2, and
d lnF2(x,Q2)/d ln(1/x). Thus, a unified description of the
data on F2 for all values of Q2 is achieved.
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Appendix A: NLO QCD evolution of F2(x, Q2)

For the reader’s convenience we present here some tech-
nical remarks concerning the NLO QCD calculation of
F2(x,Q2).

For sufficiently large Q2 > 1GeV2, the structure func-
tion F2(x,Q2) can be expressed by perturbative parton
distributions. In leading order (LO) perturbation theory,
the expression is given by

1
x
F2(x,Q2) = x

∑
q

e2
q{q(x,Q2) + q̄(x,Q2)}, (12)

where q and q̄ denote the quark and anti-quark distribu-
tion functions, e2

q is the squared quark electric charge, and
the sum runs over all included quark flavors [11]. On the
other hand, with F2(x,Q2) given in (1)–(5), and making
reasonable assumptions concerning the flavor structure of
the QCD sea, one can extract from F2(x,Q2) the different
parton distribution functions, including that of the gluon
component [1]. Generally, the calculation of F2(x,Q2) at
Q2 � 1GeV2 requires a Q2 evolution à la DGLAP [30].
The procedure consists in the solution of the LO-DGLAP
equations for the parton distribution functions taking rea-
sonable initial distributions at a starting value Q2 = Q2

0
(1GeV2 < Q2

0 < 5GeV2). Using (12), the resulting quark
distributions at Q2 can be recombined to F2 at this vir-
tuality.

By the evolution of the CKMT model we mean the
application of this procedure to the model discussed in
this paper. As mentioned above, the CKMT model of
F2(x,Q2) is valid within 0 ≤ Q2 < 5GeV2. Due to the
good agreement of the CKMT model with the experimen-
tal data in this region, the parton distributions extracted
from FCKMT

2 at a Q2
0 in that range seem to be reasonable

initial distributions for the evolution to higher Q2.
In next to leading order (NLO), the relation between

F2(x,Q2) and the parton distribution functions is more
complicated and depends on the renormalization scheme.
The calculations presented here are performed in the MS
scheme [31]. In this context, the structure function is given
[11] by

1
x
F2(x,Q2) =

∑
q

e2
q

{
q(x,Q2) + q̄(x,Q2) (13)

+
αs(Q2)

2π
[Cq,2 ∗ (q + q̄) + 2 · Cg,2 ∗ g]

}
,

where q, q̄ and g are the NLO quark, anti-quark and gluon
distribution functions, respectively, and αs denotes the
strong coupling constant in NLO. The convolutions C ∗ q
and C ∗ g are defined as

C ∗ q =
∫ 1

x

dy
y
C

(
x

y

)
q(y,Q2). (14)

The Wilson coefficients Cq,g,2(z) are given by

Cq,2(z) =
4
3

[
1 + z2

1 − z

(
ln

1 − z

z
− 3

4

)
+

1
4
(9 + 5z)

]
+
,

Cg,2(z) =
1
2

[
(z2 + (1 − z)2) ln

1 − z

z
− 1 + 8z(1 − z)

]
.

(15)

Here, the integral over a [·]+-distribution is defined as de-
scribed in [32]:

C+ ∗ q =
∫ 1

x

dy
y
C

(
x

y

)
+
q(y,Q2)

=
∫ 1

x

dy
y
C

(
x

y

) [
q(y,Q2) − x

y
q(x,Q2)

]

− q(x,Q2)
∫ x

0
dyC(y). (16)

There are alternative renormalization schemes as, for
instance, the DIS scheme [11]. Here, the form of (12) is
maintained at NLO, i.e.

1
x
F2(x,Q2) = x

∑
q

e2
q{qDIS(x,Q2) + q̄DIS(x,Q2)}. (17)

The relation between the MS- and the DIS-distributions
is given by

(−)
q DIS (x,Q2) =

(−)
q (x,Q2)

+
αs(Q2)

2π

[
Cq,2∗

(−)
q +Cg,2 ∗ g

]
+ O(α2

s ), (18)

gDIS(x,Q2) = g(x,Q2)

−αs(Q2)
2π

[∑
q

Cq,2 ∗ (q + q̄) + 2f · Cg,2 ∗ g

]
+ O(α2

s ).

The parameter f denotes the number of active flavors in
the sea.

Our procedure to extract the parton distributions from
FCKMT

2 is based on the LO formula (12). Therefore, at
NLO we extract the DIS-distributions. Now, the task is to
calculate the MS-distributions at Q2 = Q2

0. This can be
done by using a first order approximation in αs(Q2)/2π:

(−)
q (x,Q2

0) ≈(−)
q DIS (x,Q2

0)

−αs(Q2
0)

2π

[
Cq,2∗

(−)
q DIS +Cg,2 ∗ gDIS

]
, (19)

g(x,Q2
0) ≈ gDIS(x,Q2

0)

+
αs(Q2

0)
2π

[∑
q

Cq,2 ∗ (qDIS + q̄DIS) + 2f · Cg,2 ∗ gDIS

]
.

In summary, the Q2 evolution of FCKMT
2 works as fol-

lows:
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(1) One chooses one appropriate value Q2 = Q2
0 > 1GeV2

as the starting point for the evolution. In our calcula-
tions, this value is Q2

0 = 2GeV2 or Q2
0 = 4GeV2.

(2) At Q2 = Q2
0, one extracts the NLO parton distri-

bution functions from FCKMT
2 . The relation between

these parton distributions and the structure function
is given by (17), which is formally the same as (12) in
LO, so the resulting parton distributions are the DIS-
functions, i.e. qDIS(x,Q2

0), q̄DIS(x,Q2
0) and gDIS(x,Q2

0).
(3) Using (19) one calculates the MS-distributions q(x,

Q2
0), q̄(x,Q

2
0) and g(x,Q2

0).
(4) These MS-functions serve as initial distributions in a

numerical procedure to solve the NLO-DGLAP equa-
tions in the MS scheme for a certain value Q2 > Q2

0.
The results are the evoluted MS parton distributions
q(x,Q2), q̄(x,Q2) and g(x,Q2).

(5) Finally, using (13), the structure function FCKMT
2

(x,Q2) can be recalculated for any values of Q2 and
x.

Appendix B: The slopes of F2(x, Q2)

For low Q2, the CKMT model is used as defined in (1)–(5).
Here, the calculation of the logarithmic slopes dF2(x,Q2)/
d lnQ2 and d lnF2(x,Q2)/d ln (1/x) = ∆eff is straightfor-
ward. Considering x and Q2 as independent variables one
gets

dF2(x,Q2)
d lnQ2 = FS(x,Q2)

[
∆2

Q2 + ∆2

(
∆(Q2) − ∆0

)
× ln

Q2

x(Q2 + a)
+

c

Q2 + c

(
n(Q2) − 3

2

)

× ln(1 − x) +
a

(
1 + ∆(Q2)

)
Q2 + a

]

+FNS(x,Q2)
[

c

Q2 + c

(
n(Q2) − 3

2

)

× ln(1 − x) +
bαR(0)
Q2 + b

]
, (20)

which in the limit Q2 → 0 takes the form

dF2(x,Q2)
d lnQ2 ∼ (1 + ∆0)FS(x,Q2)

+ αR(0)FNS(x,Q2). (21)

Also, for the case when W is fixed one can take x ∼
C · Q2, and then, up to constant factors, one gets

dF2(x,Q2)
d lnQ2 = FS(x,Q2)

[
− ∆2

Q2 + ∆2

(
∆(Q2) − ∆0

)
× ln(Q2 + a) − ∆(Q2) +

c

Q2 + c

×
(
n(Q2) − 3

2

)
ln(1 − Q2) − Q2n(Q2)

1 − Q2

+
a(1 + ∆(Q2))

Q2 + a

]
+ FNS(x,Q2)

×
[

c

Q2 + c

(
n(Q2) − 3

2

)
ln(1 − Q2)

+
bαR(0)
Q2 + b

+ (1 − αR(0))−Q2n(Q2)
1 − Q2

]
. (22)

If now one takes W fixed with Q2 ∼ x → 0, one can easily
see that this equation simply reduces to

dF2(x,Q2)
d lnQ2 ∼ F2(x,Q2). (23)

The calculations presented in this paper are based on
the assumption of independent x and Q2, i.e., (20) and
(21). In this context, the effective x-slope, ∆eff = d ln
F2(x,Q2)/d ln (1/x), is given by

F2(x,Q2) · d lnF2(x,Q2)
d ln (1/x)

=
[
∆(Q2) +

x

1 − x
(n(Q2) + 4)

]
· FS (24)

+
[
αR(0) − 1 +

x

1 − x
n(Q2) +

xBd

Bu + Bd(1 − x)

]
· FNS.

For Q2 > Q2
0, these logarithmic slopes have to be cal-

culated from the evoluted structure function. Two differ-
ent procedures are possible: pure numerical and mainly
analytical calculations. The pure numerical procedure is
very simple:

dF2(x,Q2)
d lnQ2 ≈ Q2 · 1

2δQ2 ·
[
F2(x,Q2 + δQ2)

−F2(x,Q2 − δQ2)
]
, (25)

d lnF2(x,Q2)
d ln (1/x)

≈ (−1) · x

F2(x,Q2)
· 1
2δx

·
[
F2(x + δx,Q2)

−F2(x − δx,Q2)
]
. (26)

Here, F2(x,Q2) is the evoluted structure function, whereas
δQ2 and δx denote the corresponding increments in Q2

and x. These increments are fixed at δQ2=10−3 · Q2 and
δx = 10−3 · x in the present calculations. For low Q2,
we have checked this procedure comparing the values of
(25) and (26) with those calculated using (20) and (24).
The agreement is very good, getting, in some cases, iden-
tical numbers from both sets of equations. This numerical
procedure is the method used to determine the effective
x-slope, ∆eff = d lnF2(x,Q2)/d ln (1/x), of the evoluted
structure function. In the case of dF2(x,Q2)/d lnQ2 also
mainly analytical calculations are possible. If the parton
distribution functions are known, their derivatives con-
cerning Q2 can be calculated from the DGLAP equations.
Instead of Q2, the parameter S,

S=ln
{

T

T◦

}
, T =ln(Q2/Λ2

QCD), T◦ =ln(Q2
0/Λ

2
QCD),

(27)
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is often used in perturbation theory. In terms of S

dF2

d lnQ2 =
1

ln(Q2/Λ2
QCD)

dF2

dS
, (28)

and, in the MS scheme,

1
x

dF2(x, S)
dS

=
∑

q

e2
q

{
dq(x, S)

dS
+

dq̄(x, S)
dS

+
αs(Q2)

2π

[
Cq,2 ∗

(
dq
dS

+
dq̄
dS

)
+ 2 · Cg,2 ∗ dg

dS

]

+
1
2π

dαs(Q2)
dS

[Cq,2 ∗ (q + q̄) + 2 · Cg,2 ∗ g]
}
. (29)

The numerical integration procedure for solving the
DGLAP equations we have used gives the evoluted parton
distributions and their derivatives on S as output. In NLO,
dαs(Q2)/dS is simple to calculate:

αs(T )
2π

=
2

β0T

(
1 − β1

β2
0

ln(T )
T

)
,

1
2π

dαs(T )
dT

= − 1
T

· αs(T )
2π

+
2β1

β2
0T

3 (ln(T ) − 1),

1
2π

dαs

dS
= T · 1

2π
dαs

dT
. (30)

Thus, with the derivatives dq/dS, dq̄/dS and dg/dS, one
gets the Q2-derivative of F2. This method is called mainly
analytical (it still includes a numerical integration proce-
dure).

Equation (29) is valid [11,12] for Q2 > Q2
0. As de-

scribed in the main text, charm is treated via a photon–
gluon fusion process in the range Q2

c < Q2 < Q̄2 =
50GeV2 [11,12]. From (9), the charm slope contribution
can be determined to be

1
x

dF c
2 (x,Q

2,m2
c)

d lnQ2 = 2e2
c

αs(µ2)
2π

∫ 1

ax

dy
y

· dCc
g,2

d lnQ2

×
(
x

y
,
m2

c

Q2

)
· g(y, µ2). (31)

The total slope is the sum of (29) and (31).
We have calculated the Q2-slope of the evoluted F2 in

the perturbative region Q2 ≥ Q2
0, using both the numer-

ical and the analytical methods. The values obtained in
both procedures are in agreement, although the differences
somewhat increase in the region near Q2

0. The values in
the presented figures are from the numerical calculation.
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